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ABSTRACT

We discuss the well-posedness of the model problem

ut = VUx)x on E0,i] x [0,T], T > 0 , (P)

subject to given Neumann or Dirichlet boundary conditions at x = 0 and

x 1, and to the initial condition u(x,O) - f(x); the given functions

f 10,1] * R, * R + R are assumed to be smooth, *(0) - 0, * satisfies

the coercivity assumption t*(4) ; c 2, for some constant c > 0 and for

e R, and # is assumed to be decreasing on an interval (a,b) with

a > 0. We present a recent nonuniqueness result in the special case when

is piecewise linear and study a related convexified problem.

AMS (MOS) Subject Classifications: 35K55, 35K65

Key Words: diffusion equation, nonlinear, nonmonotone constitutive function,
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SIGNIFICANCE AND EXPLANATION

The equation (I) in the abstract can be viewed as a simple model for non-

linear diffusion. The existing mathematical theory requires *1 > 0. However,

in one space dimension the laws of thermodynamics merely imply that the graph

of # lies in the first and third quadrant, without necessarily requiring

to be monotone nondecreasing. This raises the natural question whether the

assumption *' > 0 can be replaced by the much weaker coercivity condition

O(M) ) c 2, c > 0. For a nonmonotone, piecewise linear, coercive # it was

shown in MW TSR #2354 (see [5]) that the initial value problem for (P) has

infinitely many solutions, whenever the initial data f'(o) reach the criti-

cal range where #'(9) < 0. These solutions u of (P) have the property that

ux  oscillates between regions in which ' (.) > 0. Although (P) is evidently

not well-posed, it is hoped that imposing additional physically motivated

assumptions will lead to a natural selection and a well-posed problem.

In this report we first review known (previously unpublished) a priori

estimates for (P), and we then give a simpler construction for the existence

of infinitely many solutions of (P) for a piecewise linear .. as suggested by

G. Strang E"00 We then investigate further the qualitative behavior of

solutions of (P). Motivated by known results in one space dimension for the

steady state, non-elliptic problem we study the analogous

convexified problem associated with (P). Analytical and numerical considera-

tions suggest that the unique solution of the convexified problem (which has a

monotone, nondecreasing constitutive function) can be interpreted as an

average of solutions of (P), whenever the data f'(e) reach the critical

range.

The responsibility for the wording and views expressed in this descriptive
summary lies with MW, and not with the authors of this report.



A DIFFUSION EQUATION WITH A NONMONOTONE CONSTITUTIVE FUNCTION

Klaus H8llig
I1 2 and John A. Nohell

1 . INTRODUCTION

We discuss the initial boundary value problem

ut - (ux) x  on [0,1] x [0,T]

ux(0,t) u(1,t) - 0, u(x,0) - f(x)

where subscripts denote partial derivatives, under the principal assumption:

* : R + R smooth, #(0) - 0, and there exists a

constant c > 0 such that C#(E) cFC, E e R,

and there exists an interval (a,b) with a > 0 (A)

such that #'(C) < 0, 9 e (a,b).

A model case is sketched in Figure 1.

Sa , b

Figure I

Concerning f we assume throughout that f : [0,1] + R is as smooth as

needed and satisfies the boundary conditions. Dirichlet and inhomogeneous

1Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.

2This material is based upon work partially supported by the National Science
Foundation under Grant No. MCS-7927062, Mod. 1.



boundary conditions can also be discussed, including the theorems in Sections

3 and 4.

One motivation for studying (P) is the theory of nonlinear diffusion.

Specifically the Clausius-Duhem inequality [3, p. 79] in one space dimension

can be shown to imply that the flux #(u x ) need not be a monotone function of

the gradient of temperature ux; this is consistent with our assumption (A).

If # is strictly monotone increasing (as is usually assumed) standard theory

guarantees that (P) has a unique solution which is, roughly speaking, as

smooth as the function *. In particular (see Figure 1), this is true in the

model case if the data f satisfy f'(x) ( a. If, however, #*(f'(x0 )) < 0

for some xe (0,1), then in a neighborhood of (x0,0), (P) behaves like a

backward parabolic equation which is not well posed. In particular, if in

Figure 1 1 3 C2 + 2C, then (P) cannot have a aolution u such3 2

that ux is piecewise continuous on [0,1] x [0,T] for any T > 0, unless

f is analytic. The basic problem to be discussed here is whether (P) is

well-posed in some precise sense, whenever the data f'(x) fall in the

critical range ((a,b) in the model case).

The a priori estimates given in Section 2 suggest that (P) may have

solutions u with ux e L ([0,1] x [0,T]) for some T > 0. Such solutions

are constructed in Section 3 for piecewise linear # satisfying assumption

(A), however, the solutions are not unique. motivated by known results for

the steady-state, non-elliptic problem (#(u x) M 0), we are lead to

discussing in Section 4 the *convexified" problem associated with (P), with

the objective (not yet established) of distinguishing a solution of (P) with

special properties. Other open questions include the existence of solutions

of (P) when * is not piecewise linear, and a justification of phase changes

suggested by numerical experiments.
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2. REMARKS ON A PRIORI ESTIMATES

Consider (P) with either homogeneous Neumann or Dirichlet boundary

conditions at x - 0,1, and with f smooth. Let U e W1 ,2 be a solution of

(P) on [0,1] x [0,T] for some T > 0. Standard energy methods yield the

following a priori information.

a. Multiplying by u and integrating the p.d.e. over (0,11 x [0,T] gives

11 £(~a n

(i) ear sup f u2(xt)dx < 1.f f2(x)dx, and
tet0,T] 0 2

(ii) f f (x,tdxdt 1 f2(x)dx

00 0

where c is the coercivity constant in (A)l if u satisfies Dirichlet

b.c., the Poincarg inequality applied to (ii) also yields

fI u dxdt 4 tenet.
0 0

b. Multiplying the p.d.e. by ut and integrating over (0,1] x 10,T] gives

T 12 1
(i) j j utdxdt( -C *(f'(x))dx

0 0 0
where *'(*) - *(*) and -TT RA&

rMTc TAR
U'I nsoun~od 0

(ii) ear sup f flu (x,t))dx 4 f 0(f'(x))dx 0
te[O,T] 0 0

IW

which, in view of the coercivity assumption, implies Ditrbuyizz

e..ass sup f u.(ct)dx ( f *(f(x))d Availability Codes

te[0,Tj 0 0 0 Speil
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It should be observed that if * is strictly monotone these estimates

imply that u e H2, and standard techniques yield existence, without applying

e.g. the theory of maximum monotone operators (in particular, this is true if

f'(x) < a, see Figure 1). However, one cannot do this if * is not monotone

everywhere (*'(f(x)) < 0 for some x e R).

A more subtle estimate, proved by J. Bona, L. Wahlbin and the second

author, is

c. For either the Dirichlet or Neumann problem

lu 1 (- sup I#(f'(x))l Ix m c X l[0,1]

the optimal choice of the coercivity constant c - inf 4(y) > 0.Y Y

2k
Proof: Multiply the p.d.e. by * (ux)ut, where in the exponent k is a

positive integer, and integrate with respect to x and t. Defining

k (y) - *2k1 (Od (0 0 by hypothesis on # for y e n)

one obtains, after using integration by parts and the boundary conditions:

f t f ku)U2 1 1 1 1
Su dxdt 2k + I k(Ux dx -- f (f(x))dx * (1)

0 0 0 0k

From the coercivity assumption

2k+Ic y2k+2
T(y) 2k2 (y e R), and

1 2k+1 1
0 2k+20

0 k x .2k +2 
0



ext let M if', t - sup I*(f'(x)Ii then
xeto,1i

1f T,(f,(x))dx C MNk*

0

Dropping the positive first term in (1), and then raising both sides to the

(2k + 2)'1 yields

2k+1 I 2k+i

2k 2 2k+2 N2k+2 0 4 t 4 T

I Uu( et)1(2k+2) 4 M ,0(t T2k+2k+2

(2k + 2 )2k+2

Finally, letting k + 
a* we obtain

lu I 'C1 0 ICt ICT•
x 40 c

8. Maxi3numinimu. principle. Consider (P) in the model case of Figure I

vith homogeneous Neumann boundary conditions. 
Let u e w2 '2 be a solution

on [0,11 x [OT] for some T ) 0. Then for 0 • t C T:

min(a, min f'(x)) 4 u,(x,t) 4max(b, max f'(x))

04X41 0 •x(1

For classical solutions the result can be proved 
by a standard comparison

method. We sketch a more general approach. Let v - ux . Then v is a

solution of the Dirichlet problem

v t - V)xx on [0,1] x [0,T] (2)

v(x,0) - fV(W)1 v(0,t) - v(1,t) - 0 •

Let 0 < a' < a, b' > b > 0 (see Figure 1). Define g: R + R such that

91'() 0 on (a',bl) and g'(e) > 0 otherwise. Let G(s) - J g( )dt.
0

Multiply (1) by g(v) and integrate over [0,1] x [0,t), 0 < t 4 T.

integration by parts and the boundary conditions 
yield

1 t 1 1

f G(v(St))dx + I f *'(v)g"(v)lidxdt JG(f'(x))x
0 0 0 0

-5-



By definition of g and assumptions on * the double integral is positive,

so that

f G(v(x,t))dx C f G(f,(x))dx, 0 C t C T
0 0

The successive specific choices

g()=(. - k = max(b', max f'(x))
0 4Qx 4

and

g(.) - -(k- 91+, k - min(a', mn f'l(x))

yield G(v(x,O)) = G(f'(x)) - 0. Therefore, respectively,

f (v(x,t) - k)2dx (0, 0 Ct 4T,
2 0

and

12

2 ( - vx,t)+dx C 0, 0 -C t IC T
0

Thus

k v(x,t) C k, 0 4 t C T.

Letting a' a and b' + b yields the result. It should be noted that this

stronger result, proved under the stronger assumption U e W2 '2  (rather

than W|, 2), is not implied by the L estimate in 2c.
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3. EXISTENCE AND NONUNIQUENESS IN A SPECIAL CASE

For a piecewise linear constitutive function * it was shown in [5] that

the problem (P) has infinitely many solutions if

(x - *'(f'(x)) < 0) 1 6 : (3)

Theorem. Let # be piecewise linear with #'((--,a) U (b,-)) > 0 and

*'((a,b)) < 0 (see Figure 1) and assume that f'(x) satisfies (3). There

exists T > 0 such that (M) has infinitely many solutions u with (ux )

H8lder continuous, and ux e L , ut e Lp (p < -) on the domain

(0,1] x (0,T]. Moreover, ux(x,t) 0 [a,b] for (x,t) e [0,1] x (0,T].

We outline the proof of the Theorem in the case when the increasing parts

of * are parallel, i.e. i is of the form:

I I I I
1 a b 2 Figure 2

with *'(u\[a,b]) - 1. For simplicity we also assume that f'(x) C 2, x e o,11.

The key to the proof is the construction of a function w which represents

the oscillating part of a solution u and reduces the problem (1) to an

inhomogeneous heat equation for the smooth part v of the solution u - v + w.

We describe an idea of G. Strang [6) for constructing w which

simplifies the original argument in [5]. Consider the following (infinite)

triangulation of (0,1]2

-7-
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t

0 1x

which is determined by the points

z jk :m (k2-J,2-J), k 0 ,...,2J, je x

set h(O) - 0, h'(x) - max(0,f'(x) -1). Define w as the piecewise linear

function with respect to this partition which interpolates the data

wjk :- max(v2-j 12- 4 h(k2-j), v e z)

at the points z jk*

By the definition of Viki

wik 4 h(k2-J) < w j + 2-J

and since 0 4 h' <(I we have

wj(k+l) -wik e (0,2-j)

one then easily verifies that

Ci) w. [0,1] x (0,T] + (0,1)

(ii) wt eL"

(iii) lrn Iw( e,t) - him- 0 (4)
t+O

(iv) f'(x) C 1 - 2J -> w x(x,t) -0 for t C -

Property (iv) means that for small t w x(-,t) is supported in a neighborhood

of the set (N f'(x) .0 1). Let v be the solution of the problem



vt +wt , Vxx

Vx(O,t) vx(1,t) - 0 (5)

a v(x,O) - f(x) - h(x) .

We claim that u - v + w is a solution of problem (P).

Since wt e L , vx  is H81der continuous and vt e Lp  for any p < by

standard estimates for the heat equation. Put K :- min(a - 1,2 - b). By the

continuity of vx and (4(iv)) there exists T > 0 such that

Vx(X,t) f1 + K, (x,t) e 10,1] x (0,T],

and

(supp wx ) n [0,1] x [0,T] C

{(x,t) : t e (0,T] ,Vx(X,t) > 1 - K)

In view of the relation

#(C + 1) *(l), le (1 - K,1 + KI , (6)

it follows that

V t + w - V xx M(V x) x - (v x + V x) x

Clearly, the function w is not uniquely determined. For any X> 0,

wX(x,t) :- w(xAt) satisfies (4). Since vx  is continuous the solutions

u A - v + w are distinguished by their different discontinuity patterns.

Thus there is a continuum of solutions to the problem (P).

If the monotone increasing parts of # have different slopes the proof

of the Theorem is considerably more complicated (see [5]). The reason is that

instead of (6) we have the relation

#(t + (At + B)) - *(i) , (7)

where the shift is no longer independent of . Nevertheless, the proof is

based on the construction of an auxiliary function w which, however, depends

on v and the equation for the smooth part v becomes quasilinear. For a

general smooth nonmonotone # the existence question is not settled.

-9-



In spite of nonuniqueness, numemical approximations to the problem (P)

are stable; the x-derivatives of the numerical solution have the oscillatory

behavior asserted by the Theorem.

We used a Crank-Nicholson scheme

un+1- un . (8)
Uj Uj AX D*(_) (Dn)

where uj approximates u(jAx,nAt) and Duj uj+i - uj denotes the forward

difference. For * in Figure 2 with a = 1.25, b - 1.75 and the model

initial data f(x) - 3x2 - 2x3 the numerical solutions show the following

typical behavior. For small t, uAt 4 0.1, Dun oscillates over the interval

where *'(f') is negative as shown in figure (4) below

2J

0 1 j&x Figure 4

where Ax = 2- 5 , At (Ax) 2 , nAt 2- 7 . The oscillations are very regular.

Dun alternates between the values I and 2 which, in agreement with the

Theorem, differ by I and do not lie in the interval [1.25, 1.75] where #'

is negative. Moreover, #(Dun) is (numerically) continuous.

As t - nAt increases the oscillations gradually disappear and un

approaches the limiting state ux - 0. Similar numerical approximations have

been independently studied by G. Strang and A. Naby (6]. It has not been

established that the numerical approximations converge and thereby possibly

single out a distinguished solution of the problem (P).

-10-



4. A RELATED CONVEXIFIED PROBLEM

It is known M1 that in one space dimension the solution of the problem

0 -O u x~ x f x e (0 ,1 1( 9

uM0 - 0, u(1 - d, d a constant,

can be obtained by minimizing the functional

J(u) f V *u (x))dx, *() **
0

over all functions u~ e w1 ,2 ([0,11) satisfying the given boundary conditions,

uinder suitable assumptions on * (these do not require * convex). if*

satisfies assumptions (A), (9) is the steady state problem associated with

MP. By a result of Ekeland and Tfimam (41 such a solution u of the

variational problem also minimizes the functional

f ! (u x(x))dx,
0

where 1 is the convexification of *, and u solves the convexified

problems

o - #(u1 )Xol x e [0,11

u(0) -0, u(1)d, *() ()

the function 4(e) is necessarily nondecreasing on R (if # has the graph

in Figure 2, Figure 5 below is the graph of *). An analogous variational prin-

ciple has been established for problem (P), but only for + monotone (see (21).

Motivated by these results we consider the convexified problem associated

with (M:

ut- O(uX),' (x,t) e m0,m x 10,T) ~

ux(O't) - uX(1,t) -0, u(x,0) -f(x)



By the Theorem below, solutions of (P) and (M) show a qualitatively different

behavior and, at first sight, there is ro obvious connection between them when

the data f' is #mooth and falls in tue critical range (a,b). Nevertheless,

it appears plausible that as t + - problems (P) and (F) approach the same

steady state.

For simplicity we discuss (F) only for the piecewise linear constitutive

function considered in Section 3.! For # in Figure 2, * is of the form

Figure5

The graph of j is familiar from the Stefan problem. In fact, if the initial

data satisfy

f'(x) 0 (1,2), x e [0,11

j(f') continuous ,

(P) describes a Stefan problem. If, however, f is smooth which we assume

throughout this section, the evolution of the free boundaries resulting from

(P) is different. For simplicity we assume that

f'(x) 4 2, x e [0,1]

(x : f'(x) > 1) (ro,so), 0 < r0  s0 < 1 , (11)

f"(r O ) > 0, f"(s O) < 0

Theorem. Problem (F) with * given in Figure 5 has a unique solution u

on (0,1] x R+ with

lu I < If I

-12-



if f satisfies assumptions (11), the region fl :- {(x,t) i xxt) > 1)

where ut- 0 is bounded by two curves r,s e H 1/2 (H621der class) connecting

the points (r01 0),(s010) vith the point (x*,T*) (Figure 6). Moreover,

T-( If' 1 *1 (12)

t .

0.*08-

(X*#~T*)

r

*0 r 0  S 1 x Figure 6

Note that u satisfies the heat equation on 10, 11 x 0+\ and the regularity

assertions in particular describe the behavior of u in a neighborhood of the

points (r0 1 ),(s010).

The regularity for u,r,s is proved by using the implicit semidiscrete

approximation

u(x,(n+1)At) - u(x,nht) asAt+(u (x,(n+1)A)) # x e jo,ij
xxx

continuous and u(x,t) -u(x,O) on Q we have

u(r(t),t) - f(r(t)) *(13)

Also, note that

ux(r(tr-,t) -1*(14)

-13-A



Integrating the equation ut - *(ux) x over the domain

0 :- ((xt) : 0 < x < r(t), t e (0,T*)} we obtain

0 - f (% - ux)dxdt -

r
r 0  T* r(T.) T.

- f f(x)dx - f f(r(t))r(t)dt + f u(x,T*)dx - f I dt
0 0 0 0

Using (13) and lux <I If' 1 for the estimate, it follows that

r(T.) I r(T.)

-* I f (U(xT*) - f(x))dx 4 f f 2If' Idydx If' 1
0 Ox

Numerical computations show (Figure 6 is a particular example with

f(x) - 3x2 - 2x3 ) that the curves r,s touch the x-axis. Formally, this can

be explained as follows. Differentiating equation (13) with respect to t

%nd using (14) we have

r(t)(f'(r(t)) - 1) - ut(r(t),t).

Since f'(r(O)) - f'(r 0 ) - I we can rewrite this in the form

r(t)(r(t) - r0) I ut(r(t),t)/g(r(t) - r.)

f'(9) - f'(r0)
where g(- r 0  C - r If we assume that utUxx are

continuous on Z it follows that

r

r(t) - r0 + 2t + o(r) (t + 0) , (15)

which is consistent with regularity of r established in the theorem above.

We have not yet succeeded in proving (15). The difficulty is that the

free boundary x - r(t) is characteristic for (P) at the point (ro,O).

-14-
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